4 research outputs found

    Use of non-adiabatic geometric phase for quantum computing by nuclear magnetic resonance

    Full text link
    Geometric phases have stimulated researchers for its potential applications in many areas of science. One of them is fault-tolerant quantum computation. A preliminary requisite of quantum computation is the implementation of controlled logic gates by controlled dynamics of qubits. In controlled dynamics, one qubit undergoes coherent evolution and acquires appropriate phase, depending on the state of other qubits. If the evolution is geometric, then the phase acquired depend only on the geometry of the path executed, and is robust against certain types of errors. This phenomenon leads to an inherently fault-tolerant quantum computation. Here we suggest a technique of using non-adiabatic geometric phase for quantum computation, using selective excitation. In a two-qubit system, we selectively evolve a suitable subsystem where the control qubit is in state |1>, through a closed circuit. By this evolution, the target qubit gains a phase controlled by the state of the control qubit. Using these geometric phase gates we demonstrate implementation of Deutsch-Jozsa algorithm and Grover's search algorithm in a two-qubit system

    Spectrally resolved photon echo spectroscopy of Zn(II), Co(II) and Ni(II)–octaethyl porphyrins

    Get PDF
    Spectrally resolved femtosecond three-pulse photon echo signal from some metal–octaethyl porphyrins (OEPs) like Zn(II)–OEP, Ni(II)–OEP, Co(II)–OEP is reported. Excited state dynamics is studied by time evolving photon echo spectra for different values of coherence and population relaxation times. Dependence on the spectrally resolved photon echo spectra on varying metal center is analyzed. For all these metallo-porphyrins, the electronic relaxation timescale is found to be limited by our laser pulsewidth of 50 fs whereas the timescale for intramolecular vibrational relaxation, occurring within the Q00 band was found to be over a picosecond for Co(II)–OEP and Ni(II)–OEP and within a picosecond for Zn(II)–OEP

    Control of laser induced molecular fragmentation of n-propyl benzene using chirped femtosecond laser pulses

    Get PDF
    We present the effect of chirping a femtosecond laser pulse on the fragmentation of n-propyl benzene. An enhancement of an order of magnitude for the relative yields of C3H3+ and C5H5+ in the case of negatively chirped pulses and C6H5+ in the case of positively chirped pulses with respect to the transform-limited pulse indicates that in some fragmentation channel, coherence of the laser field plays an important role. For the relative yield of all other heavier fragment ions, resulting from the interaction of the intense laser field with the molecule, there is no such enhancement effect with the sign of chirp, within experimental errors. The importance of the laser phase is further reinforced through a direct comparison of the fragmentation results with the second harmonic of the chirped laser pulse with identical bandwidth

    Small Molecule Natural Products and Alzheimer’s Disease

    No full text
    corecore